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Abstract
Learning and memory are important biological processes that allow for optimized honey bee behavior. Factors negatively 
affecting bee cognition are important contributors to declines in pollination and food security. Agrochemical use, including 
herbicides, is one of the primary stressors linked to bee decline. Predicted agricultural expansion and associated increased 
use of glyphosate combined with scarcity of honey bees further highlights the need to understand the relationship between 
glyphosate and honey bee cognition and health. Here we investigated the effect of field-realistic doses of glyphosate on honey 
bee olfactory learning and memory. We used the conditioning of the Proboscis Extension Reflex (PER) to evaluate olfac-
tory absolute conditioning. We found no differences in olfactory PER performance between glyphosate-exposed and control 
bees. We also did not find differences in olfactory memory retrieval at 15 min or 24 h after conditioning between exposed 
and non-exposed bees. However, we found that sublethal doses of glyphosate impaired memory retention; bees exposed to 
sublethal doses of glyphosate showed a decay trajectory of learned information, while in non-exposed bees the trajectory had 
a positive increment with time. This trend in memory retention was significantly different between bees exposed to 1500 ng 
and controls. Implications for insect conservation: Field-realistic doses of glyphosate had negative effect on memory dynam-
ics in the honey bee. These results suggest glyphosate affects time-dependent neural mechanisms underlying information 
processing. This negative effect contributes to declines in pollination function and food security. We highlight the need to 
critically evaluate the cost-benefit analysis of indiscriminate glyphosate use.
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Introduction

Bees are key organisms for ecosystem functioning by pol-
linating the world’s flowering plants (Kearns et al. 1998; 
Ollerton et  al. 2011; Potts et  al. 2016). Specialization 
on floral resources as the only source of nutrients makes 
these insects reliable pollinators (O’Toole and Raw 1991; 
Michener 2007) and important nodes of ecological networks 
underlying biodiversity (Kearns et al. 1998; Memmott 1999; 
Thompson 2006; Bascompte and Jordano 2007; Potts et al. 
2016; Gill et al. 2016). Moreover, bees frequently improve 
crop yield and quality (e.g., Ángel-Coca et al. 2011; Klatt 

et al. 2013). The honey bee (Apis mellifera) is the main man-
aged pollinator species in agroecosystems (Aizen et al. 2009; 
Breeze et al. 2011) because of its positive impact on crop 
production and, therefore, on local and global economies 
(Gill 1991; Southwick and Southwick 1992; Mwebaze et al. 
2010; Maggi et al. 2016; Ponisio et al. 2015; Garibaldi et al. 
2013, 2016; Blaauw and Isaacs 2014; Pywell et al. 2015). 
Honey bees, besides wild insects, play an important role in 
food security (Potts et al. 2016, Rader et al. 2016, Garibaldi 
et al. 2013).

However, the use of agrochemicals aimed at increasing 
food yield may, paradoxically, negatively impact food pro-
duction if pollinator health is impaired. The use of pesti-
cides, lack of floral resources, and pathogens are some of 
the main known stressors to pollinator bees (e.g., Kearns 
et al. 1998; Potts et al. 2010; Vanbergen 2013; Godfray et al. 
2014, 2015; Pisa et al. 2015; van der Sluijs et al. 2015; Goul-
son et al. 2015; Collison et al. 2016; Klein et al. 2017). The 
increased demand for food imposes pressure on agricultural 
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expansion, which in turns drives larger inputs of agrochemi-
cals into the system (Gill et al. 2017).

While there is evidence demonstrating the negative effect 
of insecticides on pollinator bees (Siviter et al. 2018), it is 
less known how herbicides affect bee health. From a general 
perspective, herbicides should not pose a threat to pollinators 
given that these agrochemicals are created for plant control, 
mainly weeds or undesired crops, and not for animals. Con-
sequently, herbicide use is not often a factor considered in 
models predicting honey bee decline (e.g., Smith et al. 2013; 
Becher et al. 2013). However, glyphosate, a wide spectrum 
herbicide (Goldsborough and Brown 1988) may remain in 
agroecosystems for long periods of time and in areas beyond 
local application due to high solubility in water (Kolpin et al. 
2006; Zhang et al. 2011) and low abiotic degradation (Ruep-
pel et al. 1977; Kujawa 1996). Several studies have shown 
that glyphosate has adverse effects on different groups of 
animals (vertebrates and invertebrates, including the honey 
bee) and on diverse biological processes (e.g., genotoxic-
ity, cytotoxicity, DNA damage) affecting organism health 
(see Gill et al. 2017 for a review). The IPBES assessment 
discussed the risks and knowledge gaps related to the use of 
herbicides (IPBES 2016).

Furthermore, the frequent development of glyphosate 
resistance by many weeds can promote the use of larger 
amounts of the herbicide to control them (Takano et al. 
2019). The weeds absorb, assimilate, and translocate the 
glyphosate, with concentrations between 5 and 15 mg/L 
in a time interval of 8 days after its application (Sammons 
and Gaines 2014). Moreover, glyphosate residues are pre-
sent in nectar ranging in concentration from 2.78 mg/L to 
31.3 mg/L (Thompson et al. 2014). Given that social bees 
have foraging ranges that may reach up to 4 km from the 
hive (Osborne et al. 1999; Hagler et al. 2011; Redhead et al. 
2016) and that foraging occurs in sequential visitation of 
flower sets, forager bees are repeatedly exposed to glypho-
sate. Substances present in the nectar or pollen of visited 
flowers are collected, stored and accumulated along with 
the floral resource itself in the hive (Kirchner 1999; Grüter 
and Farina 2007). The accumulation of toxic substances can 
occur rapidly as just one individual forager bee can make on 
average three round trips between the floral patch and the 
hive, collecting on average 20 µL of nectar per trip (Fewell 
and Winston 1996). Based on the amounts of glyphosate 
collected from the nectar by the honey bees (Thompson et al. 
2014), forager bees likely ingest concentrations of glypho-
sate ranging from 139 ng/bee to 1565 ng/bee per 50 µL nec-
tar harvested.

Current recommendations for glyphosate use are based on 
ecotoxicity tests of sublethal doses (LD50) on honey bees 
(Kujawa 1996). Recent studies have evaluated the impact 
of sublethal doses on bee survival (Thompson et al. 2014), 
metabolism (Boily et al. 2013; Helmer et al. 2015), internal 

microbiota balance (Motta et al. 2018; Blot et al. 2019), nav-
igation (Balbuena et al. 2015), and gustatory perception and 
olfactory learning (Herbert et al. 2014; Mengoni Goñalons 
and Farina 2018). These studies indicate that sublethal doses 
of glyphosate can impact bee health. As such, understanding 
the consequences of glyphosate use beyond targeted organ-
isms is highly warranted.

Trends in agriculture intensification predicts an increment 
in the use of glyphosate for the near future, so the commer-
cial honey bee will frequently be exposed to this agrochemi-
cal. Given that sublethal doses of glyphosate impair learning 
and long-term memory (LTM) in honey bees (Herbert et al. 
2014; Balbuena et al. 2015; Farina et al. 2019), both relevant 
cognitive skills for survival, foraging efficiency, and naviga-
tion of bees (Gould 1984; Menzel 2001a, it becomes urgent 
to investigate on the effects of glyphosate on bee pollinator 
health. This is especially relevant given the honey bee popu-
lation declines reported in North America, Europe (Stokstad 
2007; Currie et al. 2010; Pettis and Delaplane 2010; Potts 
et al. 2010; Neumann and Carreck 2010; vanEngelsdorp 
et al. 2010), and South America (Maggi et al. 2016) and the 
increased need of this pollinator with agriculture expansion 
(Aizen et al. 2009, Aizen and Harder 2009).

Long-term memory (LTM) is a relevant biological pro-
cess for foraging and survival of honey bee colonies (Men-
zel 2001a) and is a time-dependent process (Hammer and 
Menzel 1995). The time-frame window between short-term 
memory (STM) and LTM consolidation is an active period 
of cellular and molecular functioning affecting neural and 
behavioral responses (Menzel 1990; Hammer and Menzel 
1995; Menzel and Müller 1996; Müller 2012) where the 
presence of pesticides may interfere. Previous studies with 
the honey bee have found that sublethal doses of glyphosate 
negatively affect the navigational skills of adult bees sug-
gesting that LTM can be affected (Balbuena et al. 2015). 
Additionally, Pavlovian olfactory learning, STM (Herbert 
et al. 2014), and differential olfactory learning (Mengoni 
Goñalons and Farina 2018) have also been shown to be 
affected by glyphosate. Despite previous advances in the 
understanding of the effect of this pesticide on honey bee 
cognition, the effect of sublethal doses of glyphosate on the 
consolidation of the STM to LTM remains poorly under-
stood. Furthermore, previous studies on olfactory learn-
ing have been conducted with young bees (≤ 14 days old), 
though one of these studies found that bees ≥ 9 days old 
are not affected by sublethal doses of glyphosate (Mengoni 
Goñalons and Farina 2018). Given that adult foraging bees 
(≥ 15 days old) are the ones that need to face cognitive chal-
lenges outside of the hive, learn trajectory routes between the 
hive and the floral patches, associate floral cues with reward 
quality, and optimize food exploitation by making correct 
floral choices, here we asked whether sub-lethal doses of 
glyphosate affect cognition in adult bees. To answer this 
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question, we evaluate whether sub-lethal doses of glyphosate 
affect olfactory learning and memory dynamics (MTM and 
LTM) in the honey bee (Apis mellifera scutellata).

We conducted an experiment in which we evaluated the 
effect of (1) total sublethal dose ingestion (field realistic 
doses: 350 and 1500 ng) and (2) exposure type (acute and 
repeated) on bee cognitive performance, using the olfactory 
conditioning of the Proboscis Extension Reflex (PER) fol-
lowing an absolute learning protocol. PER is a robust pro-
tocol used to test Pavlovian learning in honey bees (Takeda 
1961; Bitterman et al. 1983; Abramson et al. 1997; Giurfa 
and Sandoz 2012), the technique has been used to evalu-
ate specific olfactory learning and memory in the honey 
bee (Matsumoto et al. 2012; Menzel 2012), and has been 
implemented as a tool to evaluate the effect of exogenous 
substances on learning in bees (e.g., Decourtye and Pham-
Delègue 2002; Abramson et al. 2004, 2006; Smith and Bur-
den 2014).

Materials and methods

Collection and maintenance of specimens

The study was conducted from March to August 2019 at 
the Universidad Nacional de Colombia, Bogotá, Colom-
bia (4°38′30.98″N, 74°4′52.66″W), average temperature 
and relative humidity 20.3 °C ± 1.9 °C and 55.8% ± 11.5% 
respectively for the period of the study. Forager bees used in 
the experiments (Fig. 1) were captured when departing from 
the hive using an ultraviolet translucent plexiglass pyramid 
(Matsumoto et al. 2012). Based on the preliminary observa-
tions conducted for one of us (JH) on the experimental-hive, 
and considering that bees learn the time of the day floral 
resources are available (Moore 1989), we only used individ-
uals captured within the time-framework window between 
08:00 and 10:00 h, when the bees were more active visiting 
floral resources located nearby the hive. The restriction of 

time gathering aimed to increase the probability of obtaining 
adult individuals that were in the foraging phase of their life 
cycle. Bees were then carefully transported to the laboratory 
and transferred one by one to individual scintillation vials 
(4 cm long × 2 cm wide) using the pyramid-apical aperture. 
The bees were cold-anesthetized by putting the vials inside 
an open plastic container with water and ice (Matsumoto 
et al. 2012; Smith and Burden 2014). Once the bees were 
motionless (Matsumoto et al. 2012), we harnessed them 
in plastic-resin tubes (Fig. 2a) and left them to warm and 
accustomed to the system 1 h before exposure to the treat-
ment. Bees from each set used in a 5-day experiment were 
randomly assigned to one of the five experimental groups 
(Fig. 2a). Bees were maintained at temperature of 20 °C and 
relative humidity of 85% in conditions of natural day and 
night light cycle, receiving a daily food quota of 15 µL of 
sucrose solution 30% w/v with or without glyphosate cor-
responding to bee’s exposure scheme (Fig. 1).

Experimental procedures

We controlled the total amount of glyphosate ingested per 
bee, being either 375 or 1500 ng, and the exposure to the 
glyphosate, being either acute (total amount distributed in 
a single intake: A) or repeated (total amount distributed 
across three days: R). Therefore, we had four treatments 
(field realistic doses: 375 A, 1500 A, 375R, 1500R) and a 
control group (C) of bees fed only with the vehicle (sucrose 
solution 30 %w/v). Treatment was administered on Days 
1–3 according to the experimental group: (1) Treatment C: 
bees were fed every day with 15 µL of pure sucrose solution 
30% w/v. (2) Treatment 375 A: an acute dose of 375 ng was 
administered on day 3 with the daily food regime of 15 µL 
of sucrose solution 30% w/v, the previous day 1 and day 2 
bees received 15 µL of sucrose solution 30% w/v. (3) Treat-
ment 1500 A: an acute dose of 1500 ng was administered on 
day 3 with the daily food regime of 15 µL of sucrose solu-
tion 30% w/v, the previous day 1 and day 2 bees received 

1500

Dose (ng/bee)

375
500

Experimental 
Group Treatment

Exposure Scheme
Daily Dose  

(ng/bee) Exposure Total Dose 
(ng/bee)Day 1 Day 2 Day 3

1 C 0 Control

2    375   A 375 Acute 375

0

Sample 
Size

57

68

3 57

55

0
125

 1500   R 500 Repeated 1500

 1500   A 1500 Acute 1500

595

4    375   R 125 Repeated 375

Fig. 1  Experimental groups employed to evaluate total amount 
of glyphosate ingested per bee (375 or 1500 ng), and exposure to 
glyphosate: Acute (total amount distributed in a single intake: A) or 
Repeated pulses (total amount distributed across three days: R). Five 

experimental independent groups of bees were used to applied treat-
ments: exposed bees (treatments: 375 A, 1500 A, 375R, 1500R) and 
non-exposed control (C)
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15 µL of sucrose solution 30% w/v. (4) Treatment 375R: a 
total dose ingestion of 375 ng was administered in repeated 
chronic doses of 125 ng each day (day 1, day 2, and day 3) 
with the daily food regime of 15 µL of sucrose solution 30% 
w/v. (5) Treatment 1500R: a total dose ingestion of 1500 
ng was administered in repeated pulse doses of 500 ng each 
day (day 1, day 2, and day 3) with the daily food regime of 
15 µL of sucrose solution 30% w/v (Fig. 2b). On day 4, bees 
of all experimental groups were first conditioned (Fig. 2c), 
and then tested for memory retention 15 min after the last 
training trial (medium-term memory: MTM) (Fig. 2d). After 
completing training and testing, the bees were provided with 
the daily food quota. On day 5, bees received a memory test 
24 h after the last training trial (long-term memory: LTM) 
(Fig. 2d). By following the previous process, we assured all 
five experimental groups of bees were under the same envi-
ronmental conditions and received the same amount of food 
and manipulation during the 5-day experiment. The process 
was repeated each week until a sample size ≥ 55 bees per 
treatment was reached (Fig. 1). Experimental individual bees 
were not reused. We used Glyphosate PESTANAL® Ger-
many, ref. 45,521 (purity > 98.55%) to prepare the solutions.

Olfactory conditioning using PER

We trained bees using absolute conditioning (Giurfa 2007) 
in an appetitive context in which the conditioned scent stim-
ulus (CS) was always paired to an unconditioned stimulus 
(US). We used 1-Hexanol (SIGMA, Aldrich) as the CS, 
and a sucrose solution (50% w/v) as the US reward. As in 
Amaya-Márquez et al. (2019) we included in the experi-
ment only individuals that (1) did not show spontaneous 
response (SR) to the CS scent (i.e., those that did not extend 
the proboscis in response to the CS before training), and (2) 

did show the unconditioned reflex (UR) of extending the 
proboscis when the antenna was contacted with a sucrose 
solution 50% (w/v). The use of these tests guarantee: that the 
CS was a neutral stimulus before conditioning (Pavlov 1927) 
and the individuals were motivated and able to respond to 
the US (Matsumoto et al. 2012). We utilized bees that do 
not presented visible wing wear to exclude adult bees that 
were too old.

Olfactory conditioned PER response was evaluated 
over six CS-US contingency trials (Fig. 2c). We used an 
overlapped stimuli presentation protocol: the CS was pre-
sented 6 s with the last 3 s overlapped with the US. The 
inter-stimuli interval (ISI) was 3 s and the stimuli overlap-
ping time was 3 s. The inter-trial-interval (ITI) was 10 min. 
We used syringes of 10 mL to dispense the CS (Giurfa and 
Sandoz 2012; Matsumoto et al. 2012); we attached to the 
syringe’s plunger a strip of Whatman 1 filter paper 3 cm 
× 1 cm impregnated with 10 µL of 1-Hexanol. Syringes 
were replaced every three trials, working with sets of five 
to seven bees, with the aim to maintain the same level of 
odor intensity along training trials (Smith and Burden 2014). 
The syringe was adjusted to a computer-handled machine 
controlling air flow time and duration of the parameters: 
CS exposition, ISI, and ITI. The scent emission syringe was 
located 3 cm apart from the bee’s head and the scented flow 
air was dispensed at 0.02 L/s. The system was programmed 
to extract air from the chamber after each CS-US contin-
gency presentation. The system signaled the experimenter 
when to provide the US and when to record latency.

Latency is the time that it takes the bee to respond with 
a conditioned PER to the CS stimulus presentation before 
receiving the US reward (Smith and Burden 2014). We 
measured latency in the first three seconds of the CS pres-
entation; the response was recorded with 1 s precision. 

Fig. 2  Experimental proce-
dure to evaluate the effect of 
sublethal doses of glyphosate 
on bee performance in olfactory 
learning and memory. a Bees 
captured on day-1 were har-
nessed and randomly assigned 
to one of five experimental 
groups. b On days 1–3 bees 
received the treatment with the 
daily food quota of 15 µL of a 
sucrose solution (30% w/v). c 
on Day-4 bees were olfactory 
PER conditioned. d on Day-4 
and Day-5 bees were tested 
for consolidation of olfactory 
memory for trained odor CS 
(1-Hexanol)
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This parameter was evaluated for a subset of individuals 
in each experimental group: (1) Treatment C: n = 35 bees. 
(2) Treatment 375 A: n = 33 bees. (3) Treatment 1500 A: 
n = 37 bees. (4) Treatment 375R: n = 32 bees. (5) Treatment 
1500R: n = 33 bees. According to Domjan (2003), latency 
quantifies the behavioral response of the individual when 
the reinforced CS is presented to the animal; it measures 
the strength of the reinforcement, and in classical and oper-
ant conditioning latency may decrease along training trials.

We recorded the PER conditioned response as binary: 
(1) for a positive response of extending the proboscis in 
response to the conditioned odor CS, and (0) for a negative 
response. We evaluated bees’ response to the US reward 
sucrose solution at each training trial to verify individuals 
were in good physiological condition (Suppl 1 Fig S1).

Test of memory retention

We conducted a double purpose test 15 min after the last 
training trial in absolute olfactory conditioning to evalu-
ate: (1) whether olfactory PER response was specific to the 
trained odor CS (1-Hexanol) indicating associative learning, 
and (2) whether olfactory information acquired in absolute 
olfactory conditioning had been consolidated MTM. We 
evaluated if the conditioned PER response was associa-
tive learning, to do that we used a novel odor as an internal 
control (e.g., Frost et al. 2012; Matsumoto et al. 2012). We 
performed a single trial unpaired to the US reward, using 
as the novel odor stimuli CS (1-Nonanol) and then a single 
trial unpaired with the US reward using the conditioned odor 
CS (1-Hexanol). Olfactory memory response was recorded 
as binary: (1) when the bee exhibited the conditioned PER 
response to the trained CS (1-Hexanol) and (0) when there 
was not conditioned PER response to the presentation of the 
trained CS. Only bees that showed at least one conditioned 
PER response in olfactory training trials, and did not showed 
spontaneous response to the CS (1-Hexanol), were included 
in the final analyses (Suppl 1 Fig S2). Bees giving a negative 
response in the specific memory test were evaluated to rule 
out an impaired physiological condition of the bee (Suppl 1 
Fig S3), bees that did not respond to the US reward in this 
test were discarded from the memory analysis. Here we used 
MTM and LTM as in Menzel’s model (e.g., Erber et al. 1980; 
Menzel 1999, 2000b, 2012; Menzel et al. 1993 Hammer and 
Menzel 1995; Menzel and Müller 1996).

24 h after olfactory conditioning, we conducted a test to 
evaluate retention, presumably supported by a consolidated 
LTM. We performed a single trial unpaired with the US 
reward using the conditioned odor CS (1-Hexanol). Olfac-
tory memory response was recorded as binary: (1) when the 
bee exhibited the conditioned PER response to the trained 
CS (1-Hexanol) and (0) when there was not conditioned PER 
response to the presentation of the CS (1-Hexanol).

Statistical analysis

To analyze the effect of sublethal doses of glyphosate on 
olfactory conditioning we fitted a generalized linear mixed 
model (GLMM) with the conditioned PER as the response 
variable, dose amount, exposure, and training trials as fixed 
factors, and individual bee as a random factor. We used 
a binomial distribution and the logit link function. Non-
exposed group (C) was used as control for both type of 
exposed groups (acute and repeated). We started out with the 
most complex model including all factors and interactions, 
and then iteratively went through the models eliminating 
those in which factors or interactions were not significant 
at the probability level of 0.05 (Faraway 2016). Among 
obtained models we used parsimony to choose the final 
model using Akaike information criteria (AIC) and Bayes 
information criteria (BIC) (Faraway 2016). Model overdis-
persion was calculated using Pearson residuals, the reference 
value for acceptable overdispersion was ≤ 1.5 (Zuur et al. 
2009). The significance of the factors contributing to the 
model, and the significance among levels of each factor was 
evaluated with the Wald Chi-Squared (Fox and Weisberg 
2019).

To analyze the effect of sublethal doses of glyphosate 
on latency we fitted a GLMM with latency as the response 
variable, dose amount, exposure type, and training trials as 
fixed factors, and individual bee as a random factor. We used 
a Poisson distribution and the logit link function. The rest of 
the procedure was the same as in the first model.

We evaluated the specificity of the CR to the trained odor 
using the McNemar’s test, we tested the null hypothesis that 
the probability of bees giving a PER response to the condi-
tioned CS (1-Hexanol) was equal to the probability of bees 
giving a PER response to the novel odor CS -Nonanol). This 
hypothesis was tested for the five experimental groups.

To analyze the effect of sublethal doses of glyphosate on 
memory retention after 15 min we fitted a GLMM with the 
CR as the response variable, dose amount and exposure as 
fixed factors, and individual bee as a random factor. We used 
a binomial distribution and the logit link function. The rest 
of the procedure was the same as in the first model.

To analyze the effect of sublethal doses of glyphosate on 
memory retention after 24 h we fitted a GLMM with the CR 
as the response variable, dose amount and exposure as fixed 
factors, and individual bee as a random factor. We used a 
binomial distribution and the logit link function. The rest of 
the procedure was the same as in the first model.

To evaluate the effect of sublethal doses of glyphosate 
on memory dynamics (i.e., change in olfactory performance 
between MTM and LTM) we fitted a GLMM with condi-
tioned PER as the response variable, dose amount, exposure, 
and type of memory as fixed factors; and individual bee as 
a random factor. We used a binomial distribution and the 
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logit link function. The rest of the procedure was the same 
as in the first model.

GLMM analyses were run with R version 3.6.1 (R Core 
Team 2019); we used the function “glmer” from the lme4 
package (Bates et al. 2015), “drop1” from the stats package, 
“summary” from the base R package (R Core Team 2019), 
“Anova” from the car package (Fox and Weisberg 2019), 
and “effect” from the effects package (Fox 2003). Sample 
size used in the analyses is shown in a flow chart (Suppl 1 
Fig S2).

Results

Effect of sublethal doses of glyphosate on olfactory 
learning

Olfactory conditioned PER response of bees exposed to 
sublethal doses of glyphosate was affected by dose amount 
(Wald Chisq = 5.7842, p = 0.05), training trials (Wald 
Chisq = 67.4342, p < 0.001), and by the interaction among 
these two factors (Wald Chisq = 8.2153, p < 0.05), while 
exposure (acute or repeated) was not significant. Further-
more, variability in olfactory learning performance in indi-
vidual bees was a significant factor in the model (Suppl 2 
Table S1). The negative effect of sublethal doses of glypho-
sate ingestion was significant for 375 ng per bee (p < 0.05) 
and marginally significant for 1500 ng per bee (p = 0.059). 
Training had a positive effect on bee olfactory PER per-
formance along trials (p < 0.001), with significant positive 
interactions among dose and trials on the CR, both for the 
dose amount of 375 ng per bee (p < 0.05) and 1500 ng per 
bee (p < 0.05) (Suppl 2 Table S2). Thus, both exposed and 
control bees were able to reach similar conditioned PER 
performance to odor CS (1-Hexanol) along six training tri-
als (Fig. 3). Bees exposed to glyphosate showed a condi-
tioned PER response that was lower than the control bees 
until the 3rd trial, but from trial 4th and ahead the condi-
tioned PER response of exposed bees was higher than the 
PER response of control bees (Fig. 3). The conditioned 
PER response to the CS + was significantly distinct from the 
PER response elicited by the control odor CS (1-Nonanol) 
in all experimental groups, indicating that specific olfac-
tory learning occurred (MacNemar’s test: 1.) Treatment C: 
ch-sq = 22.042, df = 1; p < 0. 001 (n = 57 bees). 2.) Treatment 
375 A: ch-sq = 18.375, df = 1; p < 0.001 (n = 68 bees). 3.) 
Treatment 1500 A: ch-sq = 30.031, df = 1; p < 0.001 (n = 57 
bees). 4.) Treatment 375R: ch-sq = 28.03, df = 1; p < 0.001 
(n = 55 bees). 5.) Treatment 1500R: ch-sq = 24.038, df = 1; 
p < 0.001 (n = 55 bees), (Fig. 4). The bee’s response to 
the US along the six training trials was high for all treat-
ments (Suppl 1 Fig S1) indicating that bees were in good 
physiological condition to respond in the test. Thus, PER 

performance in absolute olfactory conditioning cannot be 
attributed to the physiological condition of bees.

Effect of sublethal doses of glyphosate on latency

Latency was affected by training trials (Wald Chisq = 8.059, 
p < 0.01), but not by sublethal doses of glyphosate, amount 

Fig. 3  Probability of the conditioned Proboscis Extension Reflex 
(PER) response along six training trials in olfactory absolute PER 
conditioning in honey bees exposed to glyphosate ingestion doses of 
375 ng and 1500 ng per bee under acute and repeated pulses expo-
sure. (95% confidence intervals are shown)

Fig. 4  Percentage of bees responding with the Proboscis Extension 
Reflex (PER) to the conditioned odor CS (1-Hexanol) unpaired to the 
US sucrose reward and to the novel odor (control) CS (1-Nonanol) 
unpaired to the US sucrose reward 15 min after olfactory condition-
ing
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or exposure (acute vs. repeated). The only fixed factor in the 
model affecting latency was trial with a decreasing response 
along training trials (p < 0.01) in all experimental groups 
(Fig. 5), and bee individual differences as a random factor 
(Suppl 2 Table S3); no interaction among factors was found 
significant in the model (Suppl 2 Table S4).

Effect of sublethal doses of glyphosate on olfactory 
memory

Medium‑term memory (MTM)

Sublethal doses of glyphosate ingestion did not affect olfac-
tory MTM, neither dose amount (p = 0.9641) nor exposure 
(p = 0.9801) were significant factors in the model; only the 
random factor of bee individual differences explained the 
observed differences in memory (Suppl 2 Table S5).

Long‑term memory (LTM)

Sublethal doses of glyphosate ingestion did not affect olfac-
tory LTM, neither dose amount (p = 0.752) nor exposure 
(p = 0.9087) were significant factors in the model; only the 
random factor of bee individual differences explained the 
LTM memory differences (Suppl 2 Table S6).

Memory dynamics

Olfactory memory performance was affected by memory 
type (Wald Chisq = 3.7518, df = 1, p-value = 0.05), dose 

amount (Wald Chisq = 8.8694, df = 2, p-value < 0.05), 
and by the interaction among these two factors (Wald 
Chisq = 9.8111, df = 2, p-value < 0.01); exposure type was 
not significant in the model. Furthermore, the random fac-
tor bee individual differences affected changes in memory 
along time (Suppl 2 Table S7). Bees exposed to sublethal 
doses of glyphosate ingestion showed a decreased prob-
ability in olfactory memory performance being LTM lower 
than MTM, this tendency in memory dynamics was contrary 
in non-exposed (control) bees, that showed a LTM perfor-
mance higher than the MTM (Figs. 6 and 7); the effect of 
dose amount was significant for 1500 ng (p < 0.01); but not 
for 375 ng; the interaction among types of memory and 
doses was significant for dose amount both 375 ng per bee 
(p < 0.05) and 1500 ng per bee (p < 0.01) (Suppl 2 Table S8).

Discussion

We investigated the effect of field-realistic doses of glypho-
sate on olfactory learning and memory in the honey bee. 
We experimentally evaluated the effect of dose amount and 
exposure on olfactory absolute conditioning and memory 
using the conditioned PER protocol. We found that the 
probability of a conditioned PER to the CS + was nega-
tively affected by dose amount, but positively affected by 
trial and by the interaction between dose amount and trial, 
while dose exposure was not an important factor in predict-
ing the conditioned PER performance. Interestingly, despite 
of the negative effect of sublethal dose amount, exposed bees 

Fig. 5  Probability of latency (i.e., time it takes the bee to respond 
with the conditioned PER) along six training trials in olfactory abso-
lute PER conditioning, in bees exposed to ingestion of glyphosate 
doses of 375 ng and 1500 ng per bee under acute and repeated pulses 
exposure. Control bees did not ingested glyphosate (0 ng). (95% con-
fidence intervals are shown)

Fig. 6  Probability of conditioned PER response in memory tests con-
ducted 15 min and 24 h after absolute olfactory conditioning in bees 
exposed to glyphosate ingestion doses of 375 ng and 1500 ng per 
bee under acute and repeated pulses exposure. Control bees did not 
ingested glyphosate (0 ng). (95% confidence intervals are shown)
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were able to learn the CS odor to the same level than con-
trol bees. Nevertheless, the acquisition pattern differed from 
the typical olfactory learning curve in the honey bee, which 
usually reaches an asymptotic value between 80 and 90% 
by trial 3 (Menzel 1990), while in this study, bees reached 
the conditioned PER performance around 80% (78–88%) by 
trial 6. As this pattern occurred both in exposed and control 
groups, we attribute that difference to the experimental pro-
cedure followed in this study, where olfactory conditioning 
was evaluated at day 4 after the bees had spent three days 
harnessed in the lab to receive the treatment.

The potential stress caused in bees by the procedure may 
explain the observed underperformance of bees along tri-
als 2–5 in both exposed and control groups. Consequently, 
we distinguish conditioned PER performance related to the 
experimental procedure from the one related to glyphosate 
ingestion. Apart from the procedural management of bees 
related to the glyphosate-exposure-scheme, the olfactory 
conditioning PER protocol followed in our study was the 
standardized PER protocol (Bitterman et al. 1983; Matsu-
moto et al. 2012; Frost et al. 2012; Smith and Burden 2014), 
with optimal interstimulus time of 3 s and intertrial time of 
10 min (Bitterman and Menzel  1983). The conditioned PER 
response characterized and modelled in this study was spe-
cific to the trained odor indicating that associative olfactory 
learning occurred, and non-associative learning was ruled 
out as a potential factor eliciting PER. Latency response 
diminished along training trials indicating that the stimuli 
association CS-US was getting stronger along training trials 
as predicted by Domjan (2003). Also, bees exhibited MTM 

and LTM for the CS at 15 min and 24 h after the last train-
ing trial.

We detected olfactory cognition impairment in exposed 
bees at two moments in the continuous process of acquisi-
tion and formation of memory: trials ≤ 3 and then on mem-
ory decay, separated between them by a phase in which the 
negative effect of glyphosate dose amount was unnoticed due 
to both increased PER performance in trials ≥ 4, and odor 
specific memories (MTM and LTM) formation. However, 
individual exposed bees showed lower performance in the 
LTM than in MTM, while these negative memory trajecto-
ries did not occur in control bees, indicating that impair-
ment in memory retention was caused by the ingestion 
of sublethal doses of glyphosate. According to the honey 
bee memory model (e.g., Menzel 1999, 2001a,  b, 2012) 
the LTM evaluated 24 h after the last training trial in this 
study, was expected to be stable, specific, and a protein-
synthesis-dependent form of memory derived from multi-
ple trials (Menzel 1999, 2001a, or single trial (Villar et al. 
2020), therefore decreasing in this memory, in exposed but 
not in control bees, indicates affectation on LTM typology. 
The consolidation of a stable LTM requires of long-lasting 
changes in the intracellular levels of enzymes such as protein 
kinase A (PKA) and protein kinase C (PKC) (Hammer and 
Menzel 1995; Eisenhardt 2006; Müller 2012), PKA activity 
is essential for LTM consolidation, and is activated since 
the first trials by the activity of the cyclic Adenosine Mono 
Phosphate (cAMP); interestingly, when the PKA is experi-
mentally reduced there is a selective impairment in LTM, 
but not in acquisition, STM or MTM (Menzel 1999). Here in 
this study, our model detected the negative effect of glypho-
sate dose amount on acquisition, observed only in the first 
three trials, and exposed bees were able of olfactory acquisi-
tion by reinforcement along training trials. Similarly, Herbert 
et al. (2014) in their study on the effect of sublethal doses 
of glyphosate on olfactory learning, also detected impair-
ment in acquisition at trial 2 in young honey bees. Thus, 
the negative impact of glyphosate ingestion by honey bees 
on olfactory cognition behaviorally described in this study, 
coincides with the temporal activity of cAMP/PKA signal-
ing pathway which is critical to the formation of stable form 
of LTM in the honey bee (Menzel 1999; Müller 2000, 2012), 
and highlights that memory consolidation begins since the 
very first conditioning trials. Future studies with a neuro-
ethological approach focused on glyphosate affectation on 
the cAMP/PKA pathway and correlated behavioral perfor-
mance may lead to the discovery of the mechanism by which 
glyphosate impairs cognition in the honey bee. An additional 
hypothesis to be evaluated in future studies is on the interac-
tion between glyphosate and AMPA receptors. AMPA and 
NMDA receptors are key players in the formation of LTM. 
AMPA and NMDA and Glutamate receptors and Glypho-
sate is predicted to bind strongly to AMPA. Glutamatergic 

Fig. 7  Percentage of bees responding with the conditioned Proboscis 
Extension Reflex (PER) in medium-term memory (MTM) and long-
term memory (LTM) in tests conducted 15 min and 24 h after abso-
lute olfactory conditioning, respectively. Paired memory responses to 
conditioned stimuli CS (1-Hexanol) were compared in all experimen-
tal groups with the McNemar’s test, 1 df, p < 0.05 (*)
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neurons are certainly present within the mushroom bodies 
and are involved in learning, yet most attention is paid to 
cholinergic nicotinic neurons, as they comprised most of the 
population. As glutamate is not only present in the brain but 
also in the neuromuscular junction of insects, glyphosate is 
therefore predicted to impair also motor control (Zachepilo 
et al. 2018; Zgurzynski and Lushington 2019). Our study 
was conducted with adult bees of foraging age (≥ 15 days), 
though we did not specify the age further. Explicitly evaluat-
ing the role of age on the susceptibility of bees to herbicides 
is an important future direction (e.g., Mengoni Golaños and 
Farina 2018). While our experiments were conducted with 
individuals from one colony, individual differences on cog-
nitive performance were evident in all models analyzed in 
the study. Evaluating patterns across different honey bee 
colonies with distinct genetic backgrounds is a necessary 
next step to further support the findings of this study.

Type of exposure (acute o repeated pulses) was not 
a significant factor in the model predicting the bee prob-
ability to elicit the conditioned PER performance to the CS 
(1-Hexanol). This result indicates that the negative effects of 
field-realistic sublethal doses of glyphosate on honey bees 
occur even after just one exposure. The negative effect of 
sublethal doses of glyphosate on honey bees is magnified at 
the colony level in this social insect, as forager honey bees 
remain collecting and carrying nectar to the hive, despite of 
the presence of glyphosate in it (Farina et al. 2019). Thus, 
the accumulation of toxic substances in the hive, leads to 
chronical exposure of adult bees and larvae to agrochemicals 
within the hive (Giesy et al. 2000; Kirchner 1999); Herbert 
et al. (2014) showed that accumulated glyphosate in the hive 
affected larva development and adult abilities of navigation 
and optimal foraging activity.

Our results add to the increasing evidence that glyphosate 
has negative effects on cognitive functioning of forager honey 
bees (see Farina et al. 2019), even when exposure was lim-
ited to sublethal doses. We found that field-realist doses of 
glyphosate ingested by honey bees negatively affect olfactory 
acquisition and impair olfactory memory retention. Another 
study with the honey bee has also shown a negative affecta-
tion of glyphosate on navigational memory (Balbuena et al. 
2015). Foraging and navigation of a central place forager 
relies on the processes of learning and memory occurring 
in the brains of individual bees. Learning is one of the most 
important and expensive biological process, it allows organ-
isms to modulate and optimize behavior according to chang-
ing environmental conditions (Dukas 1998). Acquisition 
implies changes in neural and cellular substrates underlying 
behavioral performance which are based on elemental and 
non-elemental types of learning affecting diverse biologi-
cal processes of the social honey bee (e.g., flower decision-
making, learned floral constancy, homing to the correct hive, 
communication with hive mates). Our findings on memory 

retention impairment caused by the ingestion of sublethal 
doses of glyphosate has an effect on duplicated cognitive 
costs paid by bees for knowing: (1) investment in learning 
new information (CS-US association), keeping it along dif-
ferent phases of memory, and finally storing it in a form of 
protein-dependent-LTM that by the effect of the glyphosate 
is not stable as expected from the honey bee memory models 
(e.g. Menzel 2001b, 2012), and (2) losing capacity to retain 
and use the acquired information. The negative affectation 
on LTM has consequences on the capacity of bees to for-
age efficiently, navigate among productive floral patches, 
and between floral patches and hive. Additionally, damage 
in LTM retention will affect the capacity of individual bees 
to choose the correct flower type when economical choice is 
the challenge. Further, the honey bee is a very important pol-
linator as its evolutionary specialization on flowers for food 
is performed via generalist behavior, allowing this species to 
adapt to worldwide floras and to pollinate a diverse number 
of angiosperm species. Efficiency of this pollinator is based 
on concerted activity of hundreds of individual bees from the 
same hive communicating information with other members 
in the colony. Honey bees are important pollinators for crop 
pollination. Thus, the negative impact of glyphosate ingestion 
by honey bees on olfactory cognition will also contribute to 
declines in pollination function and food security, as these 
three processes are interdependent (Kevan and Menzel 2012).

Lastly, losses to pollinator health not only affect bee 
fitness but also can result in cascading impacts of relat-
ing biological and ecological processes: pollinator limited 
pollination in flowering plants, crop yield reduction, and 
functional biodiversity based on networks of ecological 
interactions via specialized mutualism (Potts et al. 2016; 
IPBES 2016). Given the growing literature on the nega-
tive effect of glyphosate on honey bee cognition (Farina 
et al. 2019) and other animals (Gill et al. 2017), as we 
further report in this study, we highlight the need to criti-
cally evaluate the cost-benefit analysis of indiscriminate 
glyphosate use aimed to increase food production and sup-
port food security, since this could actually result in the 
opposite effect by reducing pollinator health.
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